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Small studies

N p)

In small studies the shape of the log likelihood for a parameter can be ap-
preciably different from the quadratic shape of the Gaussian log likelihood
and p-values and confidence intervals based on Gaussian approximations
can then be misleading. It is conventional in such situations to report
eract p-values and confidence intervals. In this chapter we will explain
how these are conventionally calculated, while drawing attention to some
serious difficulties.

12.1 Exact p-values based on the binomial distribution

Consider again the example in Chapter 11 concerning genetic linkage be-
tween a gene which renders a subject susceptible to a disease, and a marker
gene. The test for linkage was based on the 16 sib pairs with two haplo-
types in common and the 3 pairs with no haplotypes in common, so the
log likelihood for €2, the odds of having two haplotypes in common, is

161log(§2) — 191og(1 + Q).

The most likely value of © is 16/3 = 5.33 and the log likelihood takes its
maximum value of —8.29 at this value of 2. The value 2 = 1 corresponds
to no linkage and the log likelihood ratio for 2 = 1 is therefore

161og(1) — 19log(1 + 1) — (—8.29) = —4.88.

The corresponding p-value is defined as the probability of obtaining a log
likelihood ratio, less than —4.88, during many repetitions of the study in
which © = 1. In the last chapter this probability was obtained approx-
imately from the chi-squared distribution; the problem now is to find its
exact value.

Bach new repetition of the study will give rise to a log likelihood ratio
for = 1. To calculate this it is necessary to go through the same steps as
for the split of 16:3. For example, a repetition in which the split was 10:9
gives a log likelihood for 2 of

1010g(2) — 1910g(1 + Q).
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Table 12.1. A computer simulation and the binomial distribution

Log likelihood ratio Simulated Binomial
Split Two-sided One-sided frequency probability

0:19 —13.17 0 0 0.000002
1:18 -9.25 0 1 0.000036
2:17 —6.78 0 17 0.000326
3:16 —-4.88 0 112 0.001848
4:15 -3.39 0 512 0.007393
5:14 —2.22 0 1777  0.022179
6:13 —-1.32 0 4519 0.051750
7:12 —0.67 0 9238 0.096107
8:11 —-0.24 0 14523 0.144161
9:10 —0.03 0 18160 0.176197
10:9 —-0.03 —-0.03 18035 0.176197
11:8 —-0.24 —0.24 14857 (.144161
12:7 —0.67 —0.67 9675 0.096107
13:6 —-1.32 —-1.32 5278 0.051750
14:5 -2.22 —2.22 2306 0.022179
15:4 -3.39 -3.39 750 0.007393
16:3 —4.88 —4.88 194 0.001848
17:2 —6.78 —6.78 38 0.000326
18:1 -9.25 —-9.25 7 0.000036
19:0 —13.17 —13.17 1 0.000002

The most likely value for Q is 10/9 = 1.11 and the maximum value of the
log likelihood is

10log(1.11) — 19log(1 + 1.11) = —13.14.
The log likelihood for £ = 1 based on this split is therefore
10log(1) — 191og(1 + 1) — (—13.14) = —0.03.

Exercise 12.1. Calculate the log likelihood ratio for € = 1 when the split
between the two outcomes is 15:4.

For a split such as 4:15, the log likelihood ratio depends on whether we
regard the model as allowing values of Q less than one. If not, then the
best supported value of Q given such a split is 1, and the log likelihood
ratio is zero. In this case a one-sided p-value is appropriate.

The way the log likelihood ratio for & = 1 depends on the observed
split is shown in full in Table 12.1, for both two-sided and one-sided views
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Fig. 12.1. Generating the binomial distribution.

of the problem.* In the two-sided case, the splits 2:17, 1:18, 0:19 and 17:2,
18:1, 19:0 all produce log likelihood ratios which are less than —4.88, and
the splits 3:16 and 16:3 produce log likelihood ratios equal to —4.88. In the
one-sided case, the splits 17:2, 18:1, and 19.0 give log likelihood ratios less
than —4.88 and the split 16:3 gives a log likelihood ratio equal to —4.88. To
find the p-values exactly we need to find the probabilities of the different
splits when Q = 1.

One way of calculating these p-values is to use a Monte Carlo approach
similar to that described in Chapter 11. A computer program is written
which splits the 19 sib pairs between the two outcomes with odds 1, and
repeats the process (say) 100 000 times. The result of doing this is shown
in the third column of Table 12.1. Out of 100 000 repetitions of the study,
none produced the split 0:19, one produced the split 1:18, 17 produced the
split 2:17, and so on. The probabilities of the different splits are therefore
estimated by the computer to be 0.00000, 0.00001, 0.00017, and so on.

As in the case of the Gaussian mean, the probabilities can also be
worked out theoretically, in this case using the binomial distribution.
Fig. 12.1 illustrates the derivation of the binomial distribution. The first
level of branching represents the possible outcomes of the first observation,
the upper branch indicating failure (with probability m) and the lower
branch indicating survival (with probability 1 — 7). The second level of
branching represents the outcome of the second observation. The proba-
bility that both subjects fail is (7)? and the probability that both survive is
(1 —7)?; the remaining two possibilities both have one failure and one sur-

*When calculating these log likelihood ratios when the splits are 0:19 or 19:0, note
that the expression 0log(0) takes the value 0.
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vivor and, since we do not need to differentiate between these, the branches
are allowed to merge, with a total probability of 2m(1 — 7). The diagram
continues with the inclusion of a third observation. The probability that all
three observations are failures is now ()3 and that all three are survivors
is (1 — n)3. The remaining probabilities correspond to 2:1 and 1:2 splits
of failures to survivors and have probabilities 3(7)?(1 — ) and 3n(1 — )2
respectively, the multiplier 3 arising because each of these points represents
the merging of 3 paths through the tree.

Exercise 12.2. Continue the diagram to generate the probabilities for all pos-
sible splits of N = 4 observations and also for N = 5.

When this process is continued it leads to the general result that the prob-
ability that N observations split as D failures and N — D survivors is

C(D,N)(n)P(1 - m)N-D.

where C(D, N), the number of ways of selecting D objects from N, is 1
when D=0or D= N and
Nx(N-1)x--x(N—-D+1)
Dx(D-1)---x2x1

otherwise. Binomial probabilities may easily be calculated by computer,
and tables are available for values of N and D up to about 20.

The binomial distribution with N = 19 and = = 0.5 is shown in the
fourth column of Table 12.1. A comparison between the third and fourth
columns of this table shows that the values estimated by the Monte Carlo
method are quite close to the correct values, particularly in the centre of
the distribution.

One of the areas of dispute when defining an exact p-value is whether
to define this as the probability of obtaining a log likelihood ratio less than
—4.88 or less than or equal to —4.88. This difficulty does not arise with the
Gaussian log likelihood because the probability of any one precise outcome
is zero, but it does arise here; in the two-sided case the splits 3:16 and
16:3 both give rise to the observed log likelihood ratio of —4.88 and have
probabilities 0.001848. If these splits are excluded, the two-sided p-value

-18

0.000002 + 0.000036 + 0.000326 + 0.000002 + 0.000036 + 0.000326

which adds up to 0.000728. If these splits are included, two further contri-
butions of 0.001848 must be included and the two-sided p-value is 0.004424.
Conventionally, splits giving rise to the observed log likelihood ratio are in-
cluded, but there are arguments in favour of including only one half of the
probability for these splits. This course of action gives the mid-p value. In
our example the mid-p value is 0.002576.



114 SMALL STUDIES

Table 12.2. Log likelihood ratios and probabilities (N = 27, = = 0.25)

Split LLR Probability Split LLR Probability
0:27  -7.767 0.000423 14:13  -4.452 0.001775
1:26  -4.589 0.003810 15:12  -5.699 0.000513
2:25  -2.835 0.016509 16:11  -7.096 0.000128
3:24  -1.645 0.045858 17:10  -8.647 0.000028
4:23  -0.836 0.091716 189  -10.357 0.000005
5:22  -0.323 0.140632 19:8 -12.233 0.000001
6:21  -0.057 0.171883 .20:7 -14.288
7:20  -0.006 0.171883 21:6 -16.536
819  -0.149 0.143236 22:5 -18.999
9:18  -0.469 0.100796 23:4  -21.709
10:17 -0.956 0.060477 24:3  -24.716
11:16 -1.603 0.031155 25:2  -28.103
12:15 -2.403 0.013847 26:1 -32.054
13:14 -3.353 0.005326 27:0 -37.430

If these arguments are repeated for one-sided p-values it can be seen
that, whichever convention is adopted, the one-sided p-value is half of the
two-sided value. This is not generally true and is only the case here because
of the symmetry of the binomial distribution in this case. This in turn
derives from the fact that the null value of  is 1, corresponding to = = 0.5.
For a test of the null value 7 = 0.25, the relationship between one- and
two-sided p-values is not as simple.

Exercise 12.3. In the genetic linkage example, one of the tests for linkage com-
pares the observed split of the 27 sib pairs into 16 with two haplotypes in common
and 11 with one or zero in common with the probabilities 0.25 and 0.75 under the
hypothesis of no linkage. The log likelihood ratios and probabilities correspond-
ing to the different possible splits are shown in Table 12.2 (probabilities less than
0.000001 are omitted). Find the exact two-sided p-value for the hypothesis of no
linkage.

In this exercise the probability distribution for the different splits is not
symmetric and the one-side p-value cannot be obtained by halving the
two-sided value. In such situations there is no general agreement about
how two-sided p-values should be calculated, because there is no general
agreement about how to compare extremeness of splits at opposite ends of
the distribution. We have chosen to measure extremeness in terms of the
log likelihood ratio, but other criteria are also used and lead to different
two-sided p-values.
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Table 12.3. Log likelihood ratios and probabilities (n = 0.25)

Cases LLR Probability

0 —0.25 0.778801
1 —0.64 0.194700
2 —241 0.024338
3 —4.70 0.002028
4 -7.34 0.000127
5 —10.23 0.000006
6 —-13.32 0.000000
etc.

12.2 The Poisson distribution

When the population at risk, N, is very large and the probability of failure,
7, is very small, the binomial distribution takes on a very simple form,
called the Poisson distribution:

where D! denotes D factorial
Dx(D-1)---x2x1

and 7 = N7. The same is approximately true of the number of failures in a
cohort subject to rate A and with ¥ person-years of observation. Providing
we can regard Y, at least approximately, as a fixed constant then the
probability of D failures is given by the Poisson distribution with n = AY.

The main use of the Poisson distribution is to calculate the p-value
corresponding to the null hypothesis which states that the rate in the study
cohort is the same as a reference rate, Ag. The null value of 7 is E = A\gY,
the expected number of cases. Given 5 = E, the Poisson distribution tells
us the probability for any value of D. The idea extends to the case where
the expected number of cases is calculated taking account of variation of
rates with time. ;

To illustrate the use of the Poisson distribution, we return to our exam-
ple of leukaemia surrounding a nuclear reprocessing plant (Exercise 11.8).
In that case the expected number of failures was 0.25 and the Poisson prob-
abilities for each possible value of D are shown in Table 12.3. The table
also lists the corresponding values of the log likelihood ratio for the null

" hypothesis, which we showed in Chapter 11 to be given by the expression

—Dlog (%) +(D-E).
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Table 12.4. Definition of the exact confidence interval

Probability

Cases (n=1.3663) (n=9.1535)
0 0.25505 0.00011
1 0.34847 0.00097
2 0.23806 0.00443
3 0.10842 0.01353
4 0.03703 0.03096
5 0.01012 0.05668
6 0.00230 0.08647
7 0.00045 0.11307
8 0.00001 0.12938
etc.

The observed number of cases of leukaemia was 4 and the corresponding
log likelihood ratio —7.34. To find the p-value we add the probabilities of
all values of D with log likelihood ratio less than or equal to —7.34 :

0.000127 + 0.000006 + 0.000000 = 0.000133.

Note that, in this case, there is no difference between the one- and two-sided
p-values.

12.3 Exact confidence intervals

An ezact confidence interval for a parameter is defined in terms of exact
p-values. The lower limit of the 90% interval for a parameter 4 is found
by searching for the null value, 6, whose p-value is exactly 0.05. Here,
the one-sided p-value which assumes that § > 6 is used. The upper limit
is defined similarly, save for the fact that the reverse one-sided p-value is
used, that is the p-value under the assumption 6 < 6. The search for
these values must be carried out by computer and is laborious, although
computational methods have been considerably improved in recent years.

Table 12.4 illustrates the idea of exact confidence intervals using the
leukaemia data discussed above. Poisson distributions are shown for two
values of n = E. Both values give one-sided p-values of approximately
0.05 when the observed number of cases is 4, since

0.03703 + 0.01012 4 0.00230 + 0.00045 + 0.00001 = 0.04991
and

0.00011 + 0.00097 + 0.00443 + 0.01353 + 0.03096 = 0.05000.
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Thus values of § E smaller than 1.3663 and values larger than 9.1535 have
one-sided p-values smaller than 0.05. Since E = 0.25, the exact confidence
interval for 6 lies between 1.3663/0.25 = 5.465 and 9.1535/0.25 = 36.614.

Exact confidence intervals are only exact in the sense that they are
derived from exact p-values. They do not necessarily have coverage proba-
bilities exactly equal to 0.90. For the Gaussian mean, u, when the standard
deviation is known, an exact 90% confidence interval does have a coverage
probability of exactly 0.90, but for parameters of other models this is often
not the case. This is because, in these cases, the coverage probability de-
pends on the unknown true value of the parameter. Thus, exact confidence
intervals are not exact in any scientifically useful sense.

This observation, taken together with the fact that there are several
different ways in which exact p-values may be defined, lead us to doubt the
practical usefulness of exact methods. Instead we would argue that, since
it is the log likelihood which measures the support for different values of
the parameter, scientific papers should aim to communicate the log likeli-
hood accurately and concisely. For large studies Gaussian approximations
allow us to communicate the log likelihood curve using only M and S, the
most likely value and a standard deviation. For small studies it might be
necessary to report the log likelihood in greater detail.

. 12.4 A Bayesian approach

The Bayesian approach goes further and uses the likelihood to update a
prior distribution for the parameter into a posterior distribution, using
Bayes’ rule as described in Chapter 10. No new difficulties are introduced
by the fact that a study is small, apart from the inevitable consequence that
the information in the likelihood will also be small, so the posterior distri-
bution will not be much different from the prior distribution. This means
that conclusions depend more upon our prior beliefs about the parameter
in a small study than they would in a large study. ‘

Similar answers to those yielded by the classical exact approach can
be obtained using Bayesian arguments if it is assumed a priori that we are
completely ignorant about the value of the parameter. Such an assumption
is called a wague prior belief and holds that no value of the parameter is
any more probable than any other value, so that the prior distribution is
flat. Onme difficulty is that a flat prior for a parameter 6 is not flat with
respect to log(f), so a flat prior for § and a flat prior for log(f) lead to
different posterior beliefs.

_This may be illustrated by our example of leukaemia in the neighbour-
hood of a nuclear plant, where the observed number of cases was D = 4
while the expected number from national rates was E = 0.25. It is con-
ventional to compare rates in the study population with reference rates by
the ratio of observed to expected cases, in this case 4/0.25 = 16.0. This
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Fig. 12.2. Log likelihood for the leukaemia data (D =4, E = 0.25).

Table 12.5. Posterior distributions for 6 for three vague priors

Prior Posterior probability distribution for ¢

(flat with 90% probability interval  Probability
respect to) Mean Lower limit Upper limit <10
Tog(0) 16.0 55 310 0.000133
0 20.0 7.9 36.6 0.000007
Ve 18.0 6.6 33.8 0.000030

may be regarded as the most likely value of the parameter, 8, of the Pois-
son probability model with n = #FE. The parameter § may be regarded as
an index of mortality in the cohort, relative to national rates.! The log
likelihood for @ remains Poisson in form and is plotted in Fig. 12.2.

‘In Bayesian statistics we start with the prior distribution for ¢ and mul-
tiply it by the likelihood to obtain the posterior distribution. The posterior
distribution is then used to calculate the (subjective) probability that @ lies
in a given range.” Table 12.5 summarizes the results of such calculations for
the leukaemia data for three different prior belief distributions — each of
them vague in some sense.

According to these analyses, it is almost certain that there is an effect

TA fuller discussion of this model will be encountered in Chapter 15.

o
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Table 12.6. Posterior distributions for # for three realistic priors

Prior Posterior probability distribution for
belief 90% probability interval  Probability
(90% limits) Mean Lower limit Upper limit 8<1.0
0.3-2.0 2.00 0.97 3.33 0.06
0.5-1.6 1.37 0.83 2.02 0.15
0.7-1.3 1.15 0.82 1.52 0.25

of living near Sellafield and the magnitude of this effect, as measured by
the mean of the posterior distribution, is very large. Unfortunately, these
conclusions are not scientifically credible. Ratios of observed to expected
cases of 5 are extremely rare in epidemiology when the numbers of cases are
large. This is true even for studies of heavily exposed versus completely
unexposed groups, and we would expect much smaller ratios for groups
defined only in terms of area of residence. That 5.5 is the lowest plausible
value for # does not seem to be a reasonable conclusion.

The problem lies with the choice of prior distributions. Prior to seeing
these data, no epidemiologist would seriously have believed that ¢ = 1000
and 8 = 2 are equally probable. Bayesian analyses with more realistic prior
distributions give more sensible answers. Table 12.6 shows the results of
analysis for three epidemiologists with more realistic prior beliefs. All these
prior distributions have mean 1.0, indicating that the epidemiologists have
no prior expectation of elevated rather than reduced risk of disease, but
they do differ in the range of values of ¢, around 1.0, which they consider
believable.}

Exercise 12.4. With which of the three epidemiologists would you most closely
identify yourself?

The conclusions of the three epidemiologists after seeing the data still
differ substantially. All tend towards the belief that there is an elevated risk
but the extent of the increase is now a lot less than before. The Bayesian
approach has therefore shown that such a small study as this cannot lead to
identical beliefs within the scientific community. The posterior distribution
is too influenced by prior belief and too little by the data.

tFor mathematical convenience only, all three distributions have been chosen from
the chi-squared family.
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Solutions to the exercises

12.1 For a 15:4 split, the log likelihood is
151log(2) — 1910g(1 + £2),

which takes its maximum value when 2 = 15/4 = 3.75. The values of the
log likelihood when 2 takes on values of 3.75 and 1 are, respectively

1510g(3.75) — 191log(4.75) = -—9.778,
15log(1) — 19log(2) = —13.170.

The log likelihood ratio at 2 = 1 is the difference between these, which is
—3.392. .

12.2 Fig. 12.3 shows the extension of the diagram from N = 3 to N =4
and N = 5. The numbers in boldface represent the values of C(D, N).

12.3 Table 12.2 shows that when the observed data are a 16:11 split, the
log likelihood ratio for m = 0.25 is -7.096. The two-sided p-value is the sum
of the probabilities for those outcomes leading to log likelihood ratios at
least this small, that is

0.000128 + 0.000028 + 0.000005 + 0.000001

+0.000423 = 0.000585.

12.4 There is no solution to this exercise!
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Fig. 12.3. Binomial distributions with N = 4 and N =5.





